This report was prepared under the framework of the LIFE+ project “The Return of the Neophron” (LIFE10 NAT/BG/000152, www.LifeNeophron.eu) funded by the European Union and co-funded by the “A. G. Leventis Foundation”, and implemented by the Bulgarian Society for the Protection of Birds (BirdLife Bulgaria), the Hellenic Ornithological Society (BirdLife Greece), the World Wide Fund for Nature – WWF Greece and the Royal Society for the Protection of Birds.

Hellenic Ornithological Society/BirdLife Greece
80, Themistokleous Str.
106 81 Athens
Tel.: +302108228704
info@ornithologiki.gr
www.ornithologiki.gr

23, Komninon Str.
546 24 Thessaloniki
Tel.: +302310244245
thess@ornithologiki.gr

WWF-Greece
21, Lempesi Str.
117 43 Athens
Tel.: +302103311987
www.wwf.gr

WWF-Greece, Evros Project
Dadia, Soufli
684 00 Evros
Tel.: +302554032210
ecodadia@otenet.gr

Recommended citation
SUMMARY
The main goal of the LIFE+ project entitled “Urgent measures to secure the survival of the Egyptian vulture (Neophron percnopterus) in Bulgaria and Greece” is to prevent the extinction of the Egyptian vulture from these two countries, by examining the threats they face. Poison baits are considered to be the main threat and cause of death of the species.

In the framework of this project, in March 2014 two Canine Teams (CT) were created for the detection of poison baits and are currently working in Central Greece and Thrace. Their goal is to control and clean on time the countryside from poison baits and animals before they can cause further poisoning.

The CTs patrolled the countryside in areas used regularly by the Egyptian Vulture and two other vultures: the Griffon and the Black vulture. Patrols were more frequent in sites where a poisoning incident had occurred in the recent past or in new poisoning incident spots that were found by Forestry Services, Management Bodies of protected areas or even civilians.

In 2014, 53 patrols were carried out in Central Greece and 35 in Thrace, in 78 days. Totally, 26 dead animals were found poisoned throughout the course of 19 patrols. The most common species found poisoned was the dog (shepherd and/or hunting dogs), with a total number of 21 dead individuals (80% of the findings), followed by the fox (4 dead individuals, 15% of the findings). In some cases, poison baits were also found (a piece of poisoned meat most of the times). The main suspected reasons for the use of poison baits were the following: fox or wolf extermination, stray dogs control and personal disputes between shepherds and/or hunters.

The first toxicological analyses carried out have identified three active ingredients: Endosulfan, Carbofuran (both banned in Greece) and Methomyl. The approval for the circulation of Methomyl was recalled in 2008 but a new approval for circulation was given in 2013.

The Canine Teams are an innovative and effective prevention action that has contributed to throw some light on the extent of the illegal use of poison baits. In addition, this action has also potentially saved many scavengers, including that of the globally threatened Egyptian vulture, from certain death.
INTRODUCTION

The LIFE+ project “Urgent measures to secure the survival of the Egyptian Vulture (Neophron percnopterus) in Bulgaria and Greece” (LIFE10 NAT/BG/000152) started in October 2011 and will be completed by the end of 2016. This project was a common initiative of the Bulgarian Society for the Protection of Birds (BSPB), the Hellenic Ornithological Society (HOS), WWF-Greece and the Royal Society for the Protection of Birds (RSPB). The project is implemented in 27 Special Protection Areas (SPA) of the Natura 2000 network (15 in Greece and 12 in Bulgaria). The main target of the project is to prevent the extinction of the Egyptian vulture in these two countries, through the study of the threats, the causes of its breeding failure, the low survival rates and the status of the species in Africa, where it winters.

The Egyptian vulture is the smallest of the four vulture species that can be found in Europe and has a wide distribution in South Palearctic and North Africa (Cramp & Simmons 1980, del Hoyo et al. 1994, Baumgart 2001). Every year, it migrates and winters in Africa. It is globally endangered and due to the sharp and continuous decline of the populations throughout its distribution range (Birdlife International, 2008) it is included in IUCN’s Red List as “Endangered”. In the last decade, its population has dramatically declined in the Balkans (Velevski et al., 2015). Less than 15 pairs remain in Greece, restricted mainly to Thrace and Central Greece (Kret 2013, Saravia 2014).

Poison baits are considered to be the major threat and cause of death of the Egyptian vulture, but also of the other vultures in the Balkans (Andevski 2013, Dobrev & Stoychev 2013). At least 13 Egyptian vultures were found poisoned in Greece in the period of 2003-2013. (Skartsi et al., 2014). If we take into account that only a small percentage of poisoned animals are actually found, the latter number reflects the real impact of the illegal use of poison baits in the Greek population. The story of Lazarus1, the Egyptian vulture that was poisoned twice (saved after the first poisoning but died, unfortunately, after the second)2 shows with no shade of doubt the magnitude of the problem of poison baits in Greece (Skartsi et al. 2014).

Dogs, with their keen sense of smell, are used by the police and the military for the detection of scents and the rescue of people. They are also used for hunting, for the protection of nature, and lately for the diagnosis of some forms of cancer (Miklosi 2011). Dogs are used in fields where man can’t work and even when he can, dogs perform better and more efficiently. Having more than 220 million smell sensors (Jensen, 2007), dogs “see” the world around them through their sense of smell (man has only c.5 m).

In some Mediterranean countries, such as Spain, Portugal and Italy, specially trained dogs are used for the fight against poison baits. In Spain, from 2004 to 2012 a Canine Team found more than 5,000 poison baits/animals just in Andalucia, (Boletín informativo sobre Geodiversidad y Biodiversidad de Andalucía 2015). The efficiency of dogs to locate poison baits was more than 85%, proving that this particular tool is an excellent means of poison bait control (Summary presentation of LIFE09 NAT/ES/00533 project). The European Canine Team (ECT, trained by Jesus Lopez Valladolid) has visited some areas of Greece (Meteora – Mt Antichasia, Mt Koziakas and Crete) in order to detect poison baits and poisoned wildlife in the framework of the international LIFE+ project “Innovative actions against illegal poisoning in EU Mediterranean Pilot Areas” LIFE09 NAT/ES/000533. During their work in Greece, the team detected many poison baits along with dead shepherd dogs, foxes and ravens.

In February 2014, two staff members of the HOS and WWF-Greece were trained in Spain so as to become specialized dog handlers; the aim was to create the first Antipoison Dog Units in Greece. Training was carried out by Jesus Lopez Valladolid, a professional trainer with more than 20 years of experience on the subject3. The training method is known as ARCON METHOD (Parejo Garcia 2013) and the dog is rewarded with play. Thus, since March 2014, two Canine Teams (CT) for the detection of poison baits are working in Central Greece and Thrace, in order to control and clear the countryside from poison baits and animals that could cause further poisoning. As more areas are checked and “cleaned”, the chances of Egyptian Vulture or other

3 http://www.perroscontraelveneno.es/
animal (vultures, eagles, mammals, etc) being poisoned decrease. Both CTs operation is included in action C1 of LIFE10 NAT/BG/000152 project.

By poison bait we mean a piece of food (usually meat, but not exclusively) in which a toxic substance has been added in order to kill animals. Poison bait use in Greece is illegal and legally persecuted. Poison baits are non-selective method that can affect a large variety of species, mainly dogs (stray, shepherd and hunting dogs), foxes, wolves and bears. The main motive for their use is the damage caused by the aforementioned species to livestock, crops and game, but also to resolve personal disputes between land users (Skartsi et al. 2014). There are several types of poison baits (a piece of meat, a bone, fat or even a complete carcass). Toxic substances used also vary and include a large range of chemical substances (mainly phytopharmaceuticals), like organophosphate pesticides, chlorinated insecticides, carbamate esters, hydrocyanide, even strychnine (Korbeti & Politis 2012). The consumption of a poison bait by an animal leads to its poisoning, and, very often, it ends causing its death. Poisoning, however, doesn’t finish here as many poisonous substances remain active in the animal carcass. As a result, if a scavenger eats a poisoned animal, it also gets poisoned. So, from just one poison bait, a death chain begins that can affect many other organisms, such as birds, saprophyte insects, insectivorous mammals etc (Figure 1).

This technical report presents the results of the CT operation which by no means represent the actual number of the incidents of illegal bait use in the study areas. The real number is indeed much larger, though the exact number is difficult to establish.

These incidents, and any other located by collaborators of HOS and WWF-Greece without the use of the CTs due to delayed notification, are registered in the database of poison bait incidents that is updated and managed by HOS.

Figure 1. Representation of the “poison death chain” of (PAU 2015).
METHODOLOGY

Study Area

The study area includes the Prefectures of Evros, Rodopi, Trikala, Grevena and Ioannina (Maps 1 & 2). The relief is mountainous and semi-mountainous and it fully or partly overlaps with eight Special Protection Areas of the Natura 2000 Network, two of which are part of the National Parks of Dadia-Lefkimi-Soufli Forest and Northern Pindos respectively. The CTs patrolled the countryside in areas used regularly by the Egyptian vulture and other vulture species like the Black vulture (*Aegypius monachus*) and the Griffon vulture (*Gyps fulvus*). The CTs patrols were more frequent in spots where a recent poisoning incident had occurred, based on the results of the report “Assessment of the illegal use of poison in the Egyptian vulture project sites in Greece and Bulgaria for the period 2003-2012” that was compiled in the framework of A3 action of LIFE+ project (Skartsi et al. 2014), or in new poisoning incident spots that were found by Forestry Services, personnel of the Management Bodies of protected areas or civilians.

Map 1. Study Area in Central Greece, with 5 SPAs of Natura 2000 network and active Egyptian Vulture nests in 2014.

Study the mortality factors at project sites with specific accent on the historic and recent use of poison, and their impacts to inform conservation actions and dissemination actions.
Detection of poison baits and animals

Every mission of a CT for the detection of poison baits required thorough preparation and planning of the visit, taking into account the topography, the weather conditions, land ownership etc. In summer, patrols started very early in the morning to avoid high temperatures. Dog handlers and dogs as well had to follow a standard dressing protocol (Figure 2). Handlers’ gear included: a GPS device, a camera, plastic bags of various sizes, containers for poison baits and single-use gloves. Dog gear included: water, a first aid kit and a reward toy. In every visit, the handler’s route was recorded in the GPS.

In every programmed patrol of the CT, the Forestry Service of the area was notified in advance. As most of the Forestry Services are understaffed, forest wardens joined the patrols only a few times.

The mean time of a patrol with no findings was an hour, because the effectiveness (attention, motivation and autonomy) of the dogs is reducing rapidly if they do not find anything within the first hour. In case they found something, however, they could work for up to six hours, depending on the weather conditions.

Every time a poison bait or animal was detected, the coordinates of the location were recorded and photos were taken. Every finding was carefully collected in a plastic bag and, depending on the case, was transferred immediately to the Rural Veterinary Clinic of the area or was stored in the freezers of the organizations, in order to run toxicology tests.
Figure 2. CT in action, with the appropriate gear.
RESULTS

In 2014, 88 patrols were carried out, 53 in Central Greece and 35 in Thrace, in 78 days (in some days, more than one patrol were carried out) and dog handlers covered more than 200 kilometers (Table 1). At this point, it’s worth noting that dogs may cover, on average, up to four times more kilometers than their handlers do. In 19 out of 88 patrols, a total of 27 dead animals were found and identified as poisoned. The most common animal found poisoned was the dog (shepherd and/or hunting dogs), with 21 dead individuals (80% of the findings), followed by the fox (4 dead ind., 15% of the findings). In some cases, poison baits were also found (a piece of poisoned meat in almost all of the times). In the area of Antichasia, approximately 8 kilos of poison baits were collected. Based on the experience gained by the CT and information provided by local witnesses, the main reasons for poison bait use are most probably the following: fox or wolf extermination, stray dog control and personal disputes between shepherds and/or hunters.

Table 1. Number of patrols, poison baits and animals found in Central Greece and Thrace.

<table>
<thead>
<tr>
<th>Study Areas</th>
<th>SPA</th>
<th>Code</th>
<th>No. patrols</th>
<th>Km</th>
<th>Patrons with findings</th>
<th>No. dead animals</th>
<th>Species</th>
<th>No. poison baits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Greece</td>
<td>Mt Antichasia and Meteora</td>
<td>GR1440005</td>
<td>38</td>
<td>80</td>
<td>10</td>
<td>15</td>
<td>13 shepherd dogs</td>
<td>2 (8 kg)^a</td>
</tr>
<tr>
<td></td>
<td>Mt Kerketio</td>
<td>GR1440006</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1 fox</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Mts Orlikas and Tsourliakas</td>
<td>GR1910004</td>
<td>1</td>
<td>2.4</td>
<td>0</td>
<td>0</td>
<td>1 cat</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Mt Tymphi (Gamila)</td>
<td>GR2130009</td>
<td>3</td>
<td>5.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Central Zagori and eastern part of Mt Mitzikelli</td>
<td>GR2130011</td>
<td>1</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not in SPA</td>
<td></td>
<td></td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1 hunting dog</td>
<td>0</td>
</tr>
<tr>
<td>Thrace</td>
<td>Dadin-Lefkimi-Soufli Forest</td>
<td>GR1110002</td>
<td>9</td>
<td>23</td>
<td>1</td>
<td>1</td>
<td>1 hunting dog</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Mountains of Evros - Dereio Valley</td>
<td>GR1110010</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Forest Complex of South Evros</td>
<td>GR1110009</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Filouri Valley</td>
<td>GR1130011</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1 fox</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Kompasatos Valley</td>
<td>GR1130012</td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>3</td>
<td>1 hunting dog</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>5</td>
<td>8</td>
<td>17</td>
<td>17 shepherd dogs (62.9%)</td>
<td>4 (14.8%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hunting dogs</td>
<td>4 foxes (14.8%)</td>
<td>1 cat (3.7%)</td>
<td>1 bird (5.7%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL | 88 | 205.2 | 19 | 27 | 17 shepherd dogs (62.9%) | 4 hunting dogs (14.8%) | 4 foxes (14.8%) | 1 cat (3.7%) | 1 bird (5.7%) | 4
All but one poisoning incidents investigated in Central Greece were within a SPA and, in some cases, very close to active Egyptian vulture nests, during the breeding period (Table 2, Map 3). Patrols, during which poison baits and/or animals were found, started after notice from Forestry Services or civilians (shepherds, veterinarians and hunters).

In Thrace, even though most of the poison bait incidents took place outside the SPAs, most of them were close to Egyptian vulture territories and during the breeding period (Table 2, Map 4). At this point, it should be stressed that all patrols during which poisoned animals or baits were found, started after civilian notice (shepherds, hunters and villagers).

Table 2. Date, area, distance of incident from active Egyptian Vulture nest in Central Greece and Thrace.

<table>
<thead>
<tr>
<th>Study Area</th>
<th>SPA</th>
<th>Date of incident</th>
<th>Area/Village of origin</th>
<th>Active Egyptian vulture nest (code)</th>
<th>Distance from active nest (km)</th>
<th>Breeding period (species present in country)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Greece</td>
<td>Mt Antichasia and Meteora</td>
<td>10.3.2014</td>
<td>Kalochori</td>
<td>PALE 1</td>
<td>10</td>
<td>YES</td>
</tr>
<tr>
<td>Central Greece</td>
<td>Mt Antichasia and Meteora</td>
<td>28.4.2014</td>
<td>Kalochori</td>
<td>PALE 1</td>
<td>9</td>
<td>YES</td>
</tr>
<tr>
<td>Central Greece</td>
<td>Mt Antichasia and Meteora</td>
<td>17.5.2014</td>
<td>Kalochori</td>
<td>PALE 1</td>
<td>9</td>
<td>YES</td>
</tr>
<tr>
<td>Central Greece</td>
<td>Outside</td>
<td>18.7.2014</td>
<td>Desi</td>
<td>AGST 1</td>
<td>30</td>
<td>YES</td>
</tr>
<tr>
<td>Central Greece</td>
<td>Mt Antichasia and Meteora</td>
<td>1.8.2014</td>
<td>Diava</td>
<td>AGST1</td>
<td>3</td>
<td>YES</td>
</tr>
<tr>
<td>Central Greece</td>
<td>Mt Antichasia and Meteora</td>
<td>9.11.2014</td>
<td>Gavros</td>
<td>AGPA 2</td>
<td>3</td>
<td>NO</td>
</tr>
<tr>
<td>Thrace</td>
<td>Outside</td>
<td>1.4.2014</td>
<td>Nea Santa</td>
<td>NEAS 1</td>
<td>3.2</td>
<td>YES</td>
</tr>
<tr>
<td>Thrace</td>
<td>Dadia-Lefkimi-Souffi Forest</td>
<td>4.4.2014</td>
<td>Kornofolia</td>
<td>SBIT 1</td>
<td>9</td>
<td>YES</td>
</tr>
<tr>
<td>Thrace</td>
<td>Outside</td>
<td>9.4.2014</td>
<td>Neo Santa/Nilites</td>
<td>NEAS 1</td>
<td>4</td>
<td>YES</td>
</tr>
<tr>
<td>Thrace</td>
<td>Outside</td>
<td>11.4.2014</td>
<td>Lagyna</td>
<td>IKIK 1</td>
<td>9.8</td>
<td>YES</td>
</tr>
<tr>
<td>Thrace</td>
<td>Outside</td>
<td>26-27/5/2014</td>
<td>Peplos</td>
<td>KAPS 1</td>
<td>18</td>
<td>YES</td>
</tr>
<tr>
<td>Thrace</td>
<td>Kompsatos Valley</td>
<td>29.8.2014</td>
<td>Iasmos</td>
<td>KOMP 3</td>
<td>11</td>
<td>YES</td>
</tr>
<tr>
<td>Thrace</td>
<td>Kompsatos Valley</td>
<td>26.11.2014</td>
<td>Kalotycho</td>
<td>KOMP 3</td>
<td>9</td>
<td>NO</td>
</tr>
</tbody>
</table>
Map 3. Patrols and poison bait incidents in Central Greece.

Map 4. Patrols and poison bait incidents in Thrace.
Samples were taken from findings that were in good condition (fresh carcasses) by veterinarians of the Rural Veterinary Clinic (private veterinarians took samples in a few special cases) and were sent for toxicological analyses to the Forensic and Toxicology Lab of the National University of Athens (Central Greece samples) or to the Centre of Veterinarian Institutions of Athens (Evros samples). Tests have detected so far three active ingredients: Endosulfan (an organochlorine insecticide that has been banned in the EU since 2005 and in our country since 2006, as it belongs to the same category as DDT), Carbofuran (a highly toxic insecticide of the carbamate ester group banned in the EU since 2008) and Methomyl (a highly toxic insecticide of the carbamate ester group that was banned in 2008 but re-approved in January 2013). Methomyl’s use was re-approved only in liquid form (ADN: ΒΕΥ2Β-Ο5Φ) while the powder form is still banned (Table 3). All these active ingredients are highly toxic to man and the environment.

Table 3. Toxicology tests results

<table>
<thead>
<tr>
<th>Date</th>
<th>SPA</th>
<th>Area</th>
<th>Sample Description</th>
<th>Result</th>
<th>Active Ingredient</th>
<th>Legal status</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/3/2014</td>
<td>Mt Antichasia and</td>
<td>Kelochori</td>
<td>Poison bait</td>
<td>Negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meteoria</td>
<td>Kalampaka</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/3/2014</td>
<td>Mt Antichasia and</td>
<td>Kelochori</td>
<td>Poison bait</td>
<td>Positive</td>
<td>Endosulfan</td>
<td>Banned</td>
</tr>
<tr>
<td></td>
<td>Meteoria</td>
<td>Kalampaka</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foros</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/4/2014</td>
<td>Mt Antichasia and</td>
<td>Kelochori</td>
<td>Poison bait</td>
<td>Positive</td>
<td>Endosulfan</td>
<td>Banned</td>
</tr>
<tr>
<td></td>
<td>Meteoria</td>
<td>Kalampaka</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/4/2014</td>
<td>Mt Antichasia and</td>
<td>Kalampaka</td>
<td>Poison bait</td>
<td>Positive</td>
<td>Endosulfan</td>
<td>Banned</td>
</tr>
<tr>
<td></td>
<td>Meteoria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17/4/2014</td>
<td>Mt Antichasia and</td>
<td>Kelochori</td>
<td>Poison bait</td>
<td>Positive</td>
<td>Endosulfan</td>
<td>Banned</td>
</tr>
<tr>
<td></td>
<td>Meteoria</td>
<td>Kalampaka</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17/5/2014</td>
<td>Mt Antichasia and</td>
<td>Kelampaka</td>
<td>Poison bait</td>
<td>Positive</td>
<td>Methomyl</td>
<td>Legal</td>
</tr>
<tr>
<td></td>
<td>Meteoria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17/5/2014</td>
<td>Mt Antichasia and</td>
<td>Kolochori</td>
<td>Cat stomach</td>
<td>Negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meteoria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22/5/2014</td>
<td>Mt Antichasia and</td>
<td>Kelampaka</td>
<td>Dog stomach</td>
<td>Negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meteoria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29/8/2014</td>
<td>Kompatatos Valley</td>
<td>Iasmos</td>
<td>Poison bait</td>
<td>Positive</td>
<td>Endosulfan</td>
<td>Banned</td>
</tr>
<tr>
<td>25/11/2014</td>
<td>Kompatatos Valley</td>
<td>Iasmos</td>
<td>Dog stomach, bird</td>
<td>Positive</td>
<td>Carbofuran</td>
<td>Banned</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vomit, bones</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Poisoning incidents
A full description of every poisoning incident addressed by the CTs is given below.

Thrace
Nea Santa 01/04/2014

- **Notice:** Shepherds of Nea Santa who had lost their dogs in early March.
- **Possible cause of bait use:** Fox control.
- **Findings:** A hunting dog in decay was found close to a dirt road (Map 5 & Appendix Ia). The body was buried.
- **Poison baits:** No. Most probably a cyanide bait was used. A shepherd had found a bait (a piece of fat with a capsule inside).
- **Lawsuit:** No.
- **Authorities informed:** Regional Administration of Rodopi, Department of Environment and Hydro-economy, Forest Directorate of Rodopi, Forestry Service of Sapes, Veterinary Directorate of Rodopi, Rural Veterinary Clinic of Sapes.
- **Toxicological analyses:** No.
- **Closest Egyptian vulture nest:** The Egyptian vulture nest of Nea Santa is 3.2 km away. The birds were sighted in the nesting area on the same day.

Map 5. Patrol (3.2 km) in Nea Santa on 01/04/2014.
Kornofolia 04/04/2014

- **Notice:** Residents of Kornofolia. According to their statements, seven stray and pet dogs and four cats had been poisoned during the last two months.

- **Possible cause of bait use:** Stray dogs’ controls.

- **Findings:** On the 3rd of April, the WWF team collected a poisoned dog found at the settlement (Appendix Ib) that had died on the 2nd of April. It was a stray dog that was fed by the locals and it had been reported to attack poultry. It was transferred to the Rural Veterinary Clinic of Soufli, for sample collection and sent for toxicological analyses (the body was buried by workers of the Municipality of Soufli). As the residents of the village reported that stray and pet dogs and cats have been found poisoned over the last two months, on the 4th of April the CT visited a landfill disposal site close to the settlement, as it is a common practice to dispose of dead animals at waste tips. A hunting dog was found (Map 6 & Appendix Ib), which was transferred to the Rural Veterinary Clinic of Soufli but, due to the condition of the body, no sample could be collected for toxicological analyses. The dead animal was transferred again to the municipal depot in order to be safely buried at the waste tip.

- **Baits:** No.

- **Lawsuit:** Yes. Lawsuit filed against unknown, at the Police Department of Soufli.

- **Authorities informed:** Municipality of Soufli, Rural Veterinary Clinic of Soufli, Forestry Service of Soufli, Forest Directorate of Evros, Management Body of Dadia-Lefkimi-Soufli Forest National Park, Police Department of Soufli.

- **Toxicological analyses:** Yes.

- **Toxicology results:** Carbofuran.

- **Closest Egyptian vulture nest:** 9 km.

Map 6. Patrol (2.3 km) in Kornofolia, on 04/04/2014.
Nea Santa-Nikites 09/04/2014

- **Notice:** A phone call on the 7th of April from livestock breeders of Nea Santa, who said that two hunting dogs had been lost in an area close to the village of Nikites.
- **Possible cause of bait use:** Fox control.
- **Findings:** A hunting dog (Map 7 & Appendix Ic) which was transferred to the Rural Veterinary Clinic of Soufli. Due to the condition of the animal, no sample could be collected for toxicological analyses.
- **Baits:** No.
- **Lawsuit:** No.
- **Authorities informed:** Forest Directorate of Rodopi, Forestry Service of Sapes, Veterinary Directorate of Rodopi, Rural Veterinary Clinic of Sapes.
- **Toxicological analyses:** No.
- **Closest Egyptian vulture nest:** 4 km.

Map 7. Patrol (4,8 km) in Nea Santa-Nikites on 09/04/2014.
Lagyna 11/04/2014

- **Notice:** A local hunter claimed to have found baits (pig ears).
- **Possible cause of bait use:** Fox control.
- **Findings:** A shepherd dog in decay (the body was buried by workers of the Municipality of Soufli) (Map 8 & Appendix Id).
- **Baits:** No.
- **Lawsuit:** No.
- **Authorities informed:** Municipality of Soufli, Forestry Service of Soufli, Management Body of Dadia-Lefkimi-Soufli Forest National Park.
- **Toxicological analyses:** No.
- **Closest Egyptian vulture nest:** 9.8 km.

Map 8. Patrol (3.6 km) in Lagyna on 11/04/2014.
Peplos 26-27/05/2014

- **Notice:** Phone call from a livestock breeder in Peplos on the 25th of May, who had lost three shepherd dogs in the area, close and west of the village of Peplos on the 10th of May.

- **Possible cause of bait use:** Fox control.

- **Findings:** On the 26th of March, two shepherd dogs and a fox while on the 27th another shepherd dog and a fox were found (Appendix Ie). No poison baits were discovered but, two single-use gloves were found along the road on both days. More specifically, two gloves were found very close to the two dead foxes (Map 9 & Appendix Ie).

- **Baits:** No. According to locals, cyanide baits had been put for foxes.

- **Lawsuit:** Lawsuit filed against unknown, at the Police Station of Feres.

- **Authorities informed:** Forestry Service of Soufli, Rural Veterinary Clinic of Feres, Forest Directorate of Evros, Veterinary Directorate of Evros, Management Body of Dadia-Lefkimi-Soufli Forest National Park, Police Department of Feres.

- **Toxicological analyses:** No. The findings were in advanced state of decay so no sample could be collected for toxicological analyses. They were collected and safely buried far away from the settlement.

- **Closest Egyptian vulture nest:** 18 km.

Map 9. Patrol (6,7 km) in Peplos on 26-27/05/2014.
Iasmos 29/08/2014

- **Notice:** Phone call on the 28th of August from the nest warden of the Egyptian vulture nest in Kompatsos, whose dog had been poisoned on the same day close to the village of Iasmos.
- **Possible cause of bait use:** To kill hunting dog possibly due to hunters retaliation.
- **Findings:** A fox and poison baits (Map 10 & Appendix If).
- **Baits:** Yes. Five baits (Map 10 & Appendix If).
- **Lawsuit:** Lawsuit filed against unknown, at the Police Department of Iasmos.
- **Authorities informed:** Forest Directorate of Rodopi, Forestry Service of Iasmos, Police Department of Iasmos, Veterinary Directorate of Rodopi, Rural Veterinary Clinic Office of Komotini.
- **Toxicological analyses:** Yes. Findings were transferred to the Rural Veterinary Clinic of Komotini for sample collection and dispatch to laboratory in Athens.
- **Toxicology results:** Endosulfan.
- **Closest Egyptian vulture nest:** 11 km.

Map 10. Patrol (2.0 km) in Iasmos on 29/08/2014.
Kalotycho 26/11/2014

- **Notice:** Hunters from Iasmos who had lost two dogs close to the village of Kalotycho. One dog was found. The same persons found the bait (remains of a goat) and burnt it.

- **Possible cause of bait use:** Wolf control.

- **Findings:** A hunting dog.

- **Baits:** No. Hunters had burnt the bait (a complete animal), however many dead insects were found at the spot where the bait was found along with a few scattered bones and a small bird (Linnet, Carduelis cannabina), which most probably ate some of the dead insects (they were sent for toxicological analyses).

- **Lawsuit:** Lawsuit filed against unknown, at the Forestry Department of Xanthi.

- **Authorities informed:** Rural Veterinary Clinic of Xanthi, Forestry Service of Xanthi, Forest Directorate of Rodopi, Forestry Service of Iasmos.

- **Toxicological analyses:** Yes. Findings were sent to the Rural Veterinary Clinic of Xanthi for sample collection and dispatch.

- **Toxicology results:** Carbofuran.

- **Closest Egyptian vulture nest:** 9 km. Although at this time of year the Egyptian vultures are in Africa, this area is regularly used by Griffon vultures (a breeding colony exists on the same cliff where the Egyptian vulture nest is located) and Black vultures that come from the forest of Dadia in search for food.

Map 11. Patrol (7,0km) in Kalotycho on 26/11/2014.
Central Greece
Kalochori (Kalampaka) 10, 13, 19/3 & 5, 6, 17/4 2014

- **Notice**: Phone call from the Forestry Service and the Forest Warden in charge. After the first visit, there was constant communication with the local livestock breeders.

- **Possible cause of bait use**: Personal disputes.

- **Findings**: On the 10th of March, four shepherd dogs were found: the location of two of them were indicated by a local livestock breeder, while the other two were located by the CT. On the 13th of March, another 13 shepherd dogs were found while three more were found on the 19th of March (Map 12 & Appendix Ig). As access was very difficult and the poisoned animals were in advanced state of decay, no samples were taken. All poisoned animals were buried and covered with lime to prevent any secondary poisoning of other animals. Some of the dead animals were buried with the help of the Municipality of Kalampaka, using earthwork machinery while those that could not be moved, were buried on site.

- **Baits**: Yes, they were found in three different spots at close distance (Map 12 & Appendix Ig). In all three spots, the same bait preparation “technique” was used, indicating there was just one culprit. Close to the baits were dead insects together with white powder sprinkled on the grass. The baits had been placed in a pasture, along a cattle passing point. Baits were immediately removed.

- **Lawsuit**: No.

- **Authorities informed**: Forestry Service of Kalampaka, Municipality of Kalampaka, Rural Veterinary Clinic of Kalampaka, Police Department of Kalampaka.

- **Toxicological analyses**: Yes, only for the poison baits. Samples were sent to the Forensic and Toxicology Laboratory of the National University of Athens.

- **Results**: Endosulfan in all three baits.

- **Closest Egyptian vulture nest**: 10 km.

Kalochori (Kalampaka) 28/4/2014

- **Notice**: A local livestock breeder whose shepherd dogs had been poisoned.
- **Possible cause of poison use**: Personal disputes.
- **Findings**: A shepherd dog, which was then buried on site (Map 13 & Appendix 1h). No sample was taken due to the bad condition of the carcass. Two more shepherd dogs had been found dead the previous day by the livestock breeder.
- **Baits**: No.
- **Lawsuit**: No.
- **Authorities informed**: Forestry Service of Kalampaka, Police Department of Kalampaka.
- **Toxicological analyses**: No.
- **Closest Egyptian vulture nest**: 9 km.

Map 13. Patrol (3,4 km) in Kalochori on 28/4/2014.
Kalochori (Kalampaka) 17/5/2014

- **Notice:** Local livestock breeder. This is the same person who had also notified of the poisoning incident on the 28th of April.
- **Possible cause of bait use:** Personal disputes.
- **Findings:** Three shepherd dogs and a cat (Map 14 & Appendix 1i). The stomachs of one shepherd dog and the cat were removed and sent for toxicological analyses.
- **Baits:** Five pieces of meat and fat (Map 14 & Appendix 1i). Close to the baits was a plastic bag that probably was used to carry the baits. The plastic bag, the baits and dead insects were immediately removed from the environment.
- **Lawsuit:** No.
- **Authorities informed:** Forestry Service of Kalampaka, Police Department of Kalampaka.
- **Toxicological analyses:** Yes. The samples (baits and stomachs of one dog and cat) were sent to the Forensic and Toxicology Laboratory of the National University of Athens.
- **Results:** Baits were found positive for Methomyl. Stomachs were found negative for any active ingredient, most probably due to the advanced state of decay.
- **Closest Egyptian vulture nest:** 9 km.

![Map 14. Patrol (1 km) in Kalochori on 17/5/2014.](image-url)
Desi (Aspropotamos) 18/7/2014

- **Notice**: Private veterinarian.
- **Possible cause of bait use**: Wolf or bear control.
- **Findings**: No dead animals were found. A local livestock breeder had found three of his shepherd dogs dead. A stomach sample from one of the dogs was taken by the Rural Veterinary Clinic of Pyli.
- **Baits**: A bait was found in a stream (Map 15 & Appendix 1k). According to a local livestock breeder, this stream is a bear pass. The bait was collected to be sent for analysis.
- **Lawsuit**: Lawsuit filed by the livestock breeder against unknown.
- **Authorities informed**: Forestry Service of Trikala, the private Game Guard Body of the Federal Hunting Association of Thessaly.
- **Toxicological analyses**: in process.
- **Closest Egyptian vulture nest**: 30 km.

Map 15. Patrol (1 km) in Desi on 18/7/2014..
Diava (Kalampaka) 1/8/2014

- **Notice:** the local media reported that a livestock breeder had lost all of his shepherd dogs due to poison baits.
- **Possible cause of poison bait use:** Fox control.
- **Findings:** A dog in advanced state of decay (Map 16 & Appendix 1l).
- **Baits:** No baits were found. The shepherd dogs that were poisoned had most probably eaten parts of the dead dog. The carcass was buried on site and no samples were taken.
- **Lawsuit:** No.
- **Authorities informed:** Forestry Service of Kalampaka.
- **Toxicological analyses:** No.
- **Closest Egyptian vulture nest:** 3 km.

Map 16. Patrol (2.6 km) in Diava on 1/8/2014.
Gavros (Kalampaka) 9/11/2014

- **Notice:** the local media reported that a livestock breeder had lost six of his shepherd dogs due to poison baits.
- **Possible cause of poison bait use:** Personal disputes.
- **Findings:** A dead fox close to the livestock breeder’s pen (Map 17 & Appendix Im). The Forestry Service of Kalampaka handled the body.
- **Baits:** No poison baits were found.
- **Lawsuit:** No.
- **Toxicological analyses:** No.
- **Closest Egyptian vulture nest:** 3 km.

Map 17. Patrol (1.5 km) in Gavros on 9/11/2014.
CONCLUSIONS

Thanks to the operation of the Canine Teams (CT) the following conclusions have been drawn:

1. The extent of the problem of the poison baits is analysed and exposed (frequency of the incidents, number of poison baits put in relation to their geographical proximity to the Egyptian Vulture territories). Poison baits are a major threat to the survival of the last Egyptian vultures and other scavengers in Greece. Even though 85% of the incidents occurred during the breeding period, no active pair of Egyptian vulture was affected. This is mainly due to the prompt detection and collection by the CTs of poison animals and/or baits that were found close to the active nests of Egyptian vulture.

2. CTs are an innovative and efficient prevention action. Prompt removal of poison baits and animals from the countryside is the most direct and effective way to reduce the risk of poisoning. Therefore, this action has probably saved many scavengers, including the globally threatened Egyptian vulture, from certain death.

3. CTs findings have proven that the problem of illegal use of poison baits is not exclusively a wildlife conservation issue. This illegal practice has serious effects on man and his economic activities, as 80% of the poisoned animals found were shepherd or hunting dogs.

4. CT findings prove that in many cases poison bait use is more intense and more frequent in certain areas (e.g. Kalochori of Kalampaka) probably due to the presence of single individuals who repeatedly exercise this illegal practice.

5. Based on the findings, the main reasons for poison bait use were most probably the following: fox or wolf elimination, stray dog control and personal disputes between shepherds and/or hunters. The same reasons are cited in a recent research for the use of poison baits (Skartsi et al. 2014).

6. Poison baits have certain features that render them dangerous to the environment and public health. Two of them are their persistence and the fact that they are designed to be inconspicuous.

7. Toxicological analyses proved that illegal pesticides (e.g. Endosulfan and Carbofuran) are used for the preparation of poison baits. The frequency in the use of these pesticides and their presence spread out in various areas of the country reveals the nationwide illegal trafficking of banned agrochemicals. According to data of the European Crop Protection Association (ECPA), 10% of the agrochemicals used in the EU are illegal, while the Europol⁶ raises the percentage to 25% for some state members. At the same time, the turnover of the illegal pesticide trade is more than 500 million Euros and, based on the existing data, 80% of the products originates from China. According to the Hellenic Crop Protection Association (HCPA), agrochemicals that are illegally imported from third countries, more specifically from Turkey, FYROM and Albania, are mainly products banned in the EU and Greece.

8. During their operation, the CTs have faced difficulties in the removal of poison baits and animals from the environment due to the ambiguous setting of responsibilities of relevant authorities (Forestry Services, Veterinarian Services, municipalities etc), the lack of resources of relevant authorities (staff, material, training, etc) and the lack of a standard procedure in the management of poison events. Another common problem encountered by the CTs are the cases of poisoned stray dogs found outside the limits of urban settlements, as in the present legislation it is not clearly defined if the Forestry Service is responsible to manage cases that do not involve wildlife.

9. The Centre of Athens Veterinary Institutions (CAVI) is also understaffed and short in resources, which impedes the trial in court of most poison events. The procedure that should be followed after the detection of a poisoned animal is, ideally, the following: Body collection on site by the relevant authority (Forestry Services if it is not in urban zone, municipalities if it is within). Transport to the Rural Veterinary Clinic and stomach collection by the veterinarian, courier dispatch of the sample to the CAVI, necropsy

and toxicological analyses and reporting of the results to the authorities, which must have already filed a complaint to the public prosecutor, so that each case can reach the court. However, due to the CAVI lack of resources and the fact that priority is given to the analysis of samples sent for the rabies virus, sample dispatch from the Rural Veterinary Clinics is hindered and toxicological analyses are either not performed on time or not performed at all. Without the results of those tests, which prove if the death of an animal was caused by poisoning or not, poisoning incidents cannot be taken to court.
MEASURES-PROPOSALS

Based on the results of the operation of the Canine Teams (CT) and the problems encountered, the following measures are proposed in order to fight more efficiently against the illegal use of poison baits:

1. First of all, actions against the illegal use of poison baits must focus on solving the conflicts between stakeholders and human-predators conflicts. If the motives for the use of poison baits are mitigated or eliminated then poisoning incidents will be also reduced. The elimination of the motives is the best prevention.

2. Although the CTs can cover large areas, it is objectively impossible for them to cover the whole of the countryside. An “active stakeholder” network could contribute to a more efficient operation of the CTs, informing them of incidents around their sites. In this way, the CTs will operate in a targeted manner and will “clean” an area as soon as possible, reducing the chances of poisoning. This stakeholder network will ideally consist of all the relevant authorities (Forestry Services, municipalities, Rural and private veterinarian clinics, Game Guard Body etc) but also of land users and civilians who are present and somehow active in the countryside (livestock breeders, hunters, villagers, mountain climbers, hiker etc).

3. The creation of printed informational material, giving relevant information on the issue of illegal use of poison baits, is essential. The present LIFE+ project has produced printed material that informs people how to contact the CTs and it will be distributed to the concerned authorities and stakeholders (Appendix II). Furthermore, it would be useful to make informational presentations for the work of the CTs to authorities (Forestry Services, Rural Veterinarian Clinics, hunting, beekeeping and farming/livestock breeding associations).

4. Judging from the experience regarding the effectiveness of the CTs on the detection of poison baits, the Hellenic Ornithological Society and WWF Greece highly recommend the creation of CTs especially in areas which are sensitive for the presence of threatened vulture and raptor species etc. CTs could also operate under the responsibility of Forestry Services, Management Bodies of Protected Areas and the Game Guard Body.

5. Systematic guarding of the countryside on a regular basis to deter aspirant culprits, especially in areas where poisoning incidents are more frequent. Under the Article 5Ζ of JMD 8353/276/E103/23–2–2012 (Official Gazzette Issue 415/B/23-2-2012) “Local Forestry Services initiate awareness campaigns and regular local checks in order to detect the use of poison baits”. Management Bodies of National Parks and the Game Guard Body can contribute to the work of the Forestry Services, including countryside control of the illegal use of poison baits in their annual guarding plan along with other illegal actions, such as illegal logging, poaching etc. A specific protocol for the management of poison incidents is necessary to ensure the effectiveness of the surveillance effort.

6. Active involvement of relevant authorities (Forestry Services, Veterinary Department, municipalities) for the safe burial of poisoned animals as there are very few incineration facilities for hazardous organic material in Greece. The Ministerial circular No.: 2967/33905-13.3.2014 of the Ministry of Environment and Energy, titled “Public information on agricultural drugs and handling of cases of poison baits from the use of crop protection substances” provides guidelines for the safe burial of poison baits and animal tissues.

7. The illegal use of poison baits is an ex officio crime, in other words whoever acknowledges this crime in any way (eyewitness or ear witness) has the right to file a complaint to the prosecuting authorities. The latter are obliged to proceed to research even in the case of filing a lawsuit against unknown, before they deliver the case file to the district attorney. Authorities should request toxicological analyses so as to identify the toxic substance that has been used and to include the findings in the case file.

8. The CAVI should be sufficiently staffed and equipped in order to be able to perform toxicological analyses for a wider range of toxic substances and to cover the needs of the whole of the country.
ACKNOWLEDGEMENTS

We would like to thank the following authorities and people who, by their own initiative and aid, notified us about poison incidents or contributed to the incident handling, the sample dispatch for toxicological analyses, the safe burial of the poisoned samples and the submission of lawsuits against persons unknown:

Evros:
Forestry Service of Soufli, Forest Directorate of Rodopi, Forestry Services of Sapes and Iasmos, Forestry Service of Xanthi, Rural Veterinarian Clinics of Soufli, Komotini and Xanthi, Police Departments of Soufli, Feres, Iasmos, Municipality of Soufli.

Hunters, livestock breeders and residents of Iasmos, Nea Santa, Peplos, Tychero, Lyra, Kornofolia and Soufli.

Central Greece:
Forestry Service of Kalampaka, Forestry Service of Trikala, Rural Veterinarian Clinic of Kalampaka, Municipality of Kalampaka, Police Department of Kalampaka, Hunting Association of Kalampaka, Hunting Association of Pyli.

We would also like to thank all the people (livestock breeders, hunters, farmers, villagers) of the area of Mts Chasia – Antichasia and Mt Koziakas for their close and very willing cooperation.
REFERENCES

• Boletín informativo sobre Geodiversidad y Biodiversidad de Andalucía. 2015, <http://www.juntadeandalucia.es/medioambiente/portal_web/web/servicios/centro_de_documentacion_y_biblioteca/fondo_editorial_digital/revistas_boletines/geobio/boletin_geobio_41_especial_unidad_canina.pdf, πρόσβαση στις 06.03.2015>

• PAU, 2015. <www.escapula.com, πρόσβαση στις 15.03.2015>.

APPENDICES

Appendix I

Data recorded during patrols

<table>
<thead>
<tr>
<th>Survey ID</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>Place</td>
<td></td>
</tr>
<tr>
<td>SPA</td>
<td></td>
</tr>
<tr>
<td>Habitat</td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td></td>
</tr>
<tr>
<td>Start time</td>
<td></td>
</tr>
<tr>
<td>End time</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td></td>
</tr>
<tr>
<td>Poison baits (Y/N)</td>
<td></td>
</tr>
<tr>
<td>PB No/Quantity (Kg)</td>
<td></td>
</tr>
<tr>
<td>Coordinates</td>
<td></td>
</tr>
<tr>
<td>Dead animals</td>
<td></td>
</tr>
<tr>
<td>Dead species 1</td>
<td></td>
</tr>
<tr>
<td>Dead species 1 No</td>
<td></td>
</tr>
<tr>
<td>Coordinates</td>
<td></td>
</tr>
<tr>
<td>Dead species 2</td>
<td></td>
</tr>
<tr>
<td>Dead species 2 No</td>
<td></td>
</tr>
<tr>
<td>Coordinates</td>
<td></td>
</tr>
<tr>
<td>Dead species 3</td>
<td></td>
</tr>
<tr>
<td>Dead species 3 No</td>
<td></td>
</tr>
<tr>
<td>Coordinates</td>
<td></td>
</tr>
<tr>
<td>GPS track code</td>
<td></td>
</tr>
<tr>
<td>Track length (km)</td>
<td></td>
</tr>
<tr>
<td>Dog’s track (km)</td>
<td></td>
</tr>
<tr>
<td>Wind speed</td>
<td></td>
</tr>
<tr>
<td>Wind direction</td>
<td></td>
</tr>
<tr>
<td>Rain</td>
<td></td>
</tr>
<tr>
<td>Samples collected (Y/N)</td>
<td></td>
</tr>
<tr>
<td>Samples holder</td>
<td></td>
</tr>
<tr>
<td>Samples code</td>
<td></td>
</tr>
<tr>
<td>Analysis (Y/N)</td>
<td></td>
</tr>
<tr>
<td>Results (to be filled in later)</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
</tbody>
</table>
Appendix II

Dead dog (Kornofolia, 02/04/2014)

Dead dog in advanced state of decay (Kornofolia 04/04/2014)

Appendix IID. Photo of the dead dog in advanced state of decay on Lagyna on 11/4/2014.
Appendix Ile. Photos of dead dogs and a fox in advanced state of decay, along with single-use gloves found in Peplos on 26-27/5/2014.
Appendix II.f. Photos of a dead fox and poison baits in Iasmos on 28/8/2014.
Appendix Ilg. Photos of the spot where the bait was put, with many dead insects and a dead dog in Kalotycho on 26/11/2014.

Appendix IIm. Photos of dead shepherd dogs and poison baits in Kalochori of Kalampaka on 10, 13, 19/3 & 5, 6, 17/4 2014.

Appendix IIk. Photos of dead dogs and poison baits in Kalochori of Kalampaka on 17/5/2014.
Appendix III. Photos of a poison bait in Desi of Aspropotamos on 18/7/2014.

Appendix IIIm. Photo of a dead dog in Diava of Kalampaka on 1/8/2014.
Appendix I. Photo of a dead fox in Gavros of Kalampaka on 9/11/2014.
Appendix III

Information poster

Information card